Set Membership, Equality, and Subsets

An element of a set is an object directly contained within that set. For example, $1 \in\{1,2,3\}$ and $\emptyset \in\{\varnothing\}$, but $1 \notin \emptyset$ and $1 \notin\{2,3\}$. Note that $1 \notin\{\{1\}\}$, and $\{1\} \notin\{1\}$, but $\{1\} \in\{\{1\}\}$.

Two sets are equal if they contai the same elements. For example, we have that $\{1,2\}=\{2,1\}$ and that $\{\varnothing\}=\{\varnothing\}$. However, $\{\varnothing\} \neq\{\{\varnothing\}\}$, because each set contains an element the other does not. A set and a non-set are never equal; in particular, this means $x \neq\{x\}$ for any x.
A set A is a subset of a set B (denoted $A \subseteq B$) if every element of A is also an element of B :

$$
\mathbb{N} \subseteq \mathbb{Z} \quad\{1,2,3\} \subseteq\{1,2,3,4\} \quad\{1\} \subseteq\{1,\{1\},\{\{1\}\}\}
$$

Set Operations

The set $\{x \mid$ some property of $x\}$ is the set of all x 's satisfying the given property. Formally, we have that $w \in\{x \mid$ some property of $x\}$ if and only if the specified property holds for w.
The set $A \cup B$ is the set $\{x \mid x \in A$ or $x \in B\}$. Equivalently, $x \in A \cup B$ if and only if $x \in A$ or $x \in B$.
The set $A \cap B$ is the set $\{x \mid x \in A$ and $x \in B\}$. Equivalently, $x \in A \cap B$ precisely if $x \in A$ and $x \in B$.
The set $A-B$ is the set $\{x \mid x \in A$ and $x \notin B\}$. This set is also sometimes denoted $A \backslash B$.
The set $A \Delta B$ is the set $\{x \mid$ exactly one of $x \in A$ and $x \in B$ is true $\}$.

Power Sets

The power set of a set S, denoted $\wp(S)$, is the set of all subsets of S. Using set-builder notation, this is the set $\wp(S)=\{U \mid U \subseteq S\}$. Cantor's Theorem states that $|S|<|\wp(S)|$ for every set S.

Special Sets

The set $\varnothing=\{ \}$ is the empty set containing no elements.
The set $\mathbb{N}=\{0,1,2,3,4, \ldots\}$ is the set of all natural numbers. We treat 0 as a natural number.
The set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of all integers.
The set \mathbb{R} consists of all the real numbers. The set \mathbb{Q} consists of all rational numbers.

Cardinality

The cardinality of a finite set S (denoted $|S|$) is the natural number equal to the number of elements in that set. The cardinality of \mathbb{N} (denoted $\mathbb{N} I$) is \mathbb{N}_{0} (pronounced "aleph-nought"). Two sets have the same cardinality if there is a way of pairing up each element of the two sets such that every element of each set is paired with exactly one element of the other set.

